Statistical models for estimating chlorophyll-A with Sentinel-2A from the Cerrón GrandeReservoir
PDF (Spanish)
EPUB (Spanish)

Keywords

Chlorophyll-A
Remote Sensing
Statistics
Environmental pollution
TBDO

How to Cite

Carranza Flores, F. A., Lemus Flores, J. E., & Chávez Cardona, A. Y. (2025). Statistical models for estimating chlorophyll-A with Sentinel-2A from the Cerrón GrandeReservoir. Investigaciones Latinoamericanas En Ingeniería Y Arquitectura, (2), 21–27. https://doi.org/10.51378/ilia.vi2.9665

Abstract

This study arises due to the environmental pollution crisis in the El Cerrón Grande Wetland, which affects the ecological quality of the reservoir, as well as the ecosystem services that the wetland can offer. One of the common pollution problems faced by wetlands is the eutrophication of their waters, generating proliferations of phytoplankton that can reach dangerous levels. Chlorophyll-a concentration is an indirect measure of the phytoplankton biomass in a body of water [1]. The objective was to estimate the value of the concentration of chlorophyll-a through empirical models; To do this, bands from the Sentinel-2A satellite were used to provide an alternative to the most widely used index called TBDO (Triple Band Dall’ Olmo). Indices were generated with all possible combinations of the bands; furthermore, by means of principal component analysis, the bands and chlorophyll-a were grouped into three factors that were similar to the bands used by the TBDO. As a result, 3 models of 100,000 generated possibilities were chosen, which when compared against the TBDO offer a better estimate of the concentration of chlorophyll-a in the Wetland. Most of the assumptions of the models were overcome and the spatial autocorrelation was analyzed.

PDF (Spanish)
EPUB (Spanish)

References

R. Duarte, Relación entre clorofila superficial y clorofila en la zona eufótica del golfo de California: Posible aplicación para estimar la producción primaria con datos obtenidos por sensores remotos. Ciencias Marinas, 19(4), 473-490, 1993.

D. Russin, P. ten Brink, A. Farmer, T. Badura, D. Coates, J. Förster y N. Davidson, The economics of ecosystems and biodiversity for water and wetlands. IEEP, 78, 2012.

M. Rovira, J. Ortez, L. Morán, G. Arevalo, J. Franco y D. Linares, Establecimiento de línea base para la identificación de Cianobacterias potencialmente tóxicas del Embalse Cerrón Grande, 2020.

S. Monge, Desarrollo del método para la cuantificación de la Clorofila-a en muestras de agua, por espectroscopia ultravioleta visible, 2015.

F. López-Hernández, A. Artal-Tur y M. Maté-Sánchez-Val, Identifying nonlinear spatial dependence patterns by using non-parametric tests. Investigaciones Regionales (21), 19-36. (41), 37-47, 2011.

A. Gitelson, G. Dall’Olmo, W. Moses, D. Rundquist, T. Barrow, T. Fisher, y J. Holz, Un modelo semianalítico simple para la estimación remota de clorofila-a en aguas turbias: Validación. Detección remota del medio ambiente, 112 (9), 3582-3593, 2008.

FasterCapital, Criterio de información de Akaike (AIC): el criterio secreto para la selección de modelos, 2025, [Online] Available: https://fastercapital.com/es/contenido/Criterio-de-informacion-de-Akaike--AIC--AIC--El-criterio-secreto-para-la-seleccion-de-modelos.html

P. Urrego, X. Sòria-Perpinyà, J. Delegido, M. Pereira-Sandoval, A. Ruiz-Verdu, C. Tenjo, E. Vicente, Eduardo, J. Soria y J. Moreno, Monitoreo ecológico multitemporal de la Albufera de Valencia con imágenes Sentinel-2, 2018, [Online] Available: https://www.researchgate.net/publication/328783570_Monitoreo_ecologico_multitemporal_de_la_Albufera_de_Valencia_con_imagenes_Sentinel-2

W. Jang, J. Kim, J.H. Kim, J. K. Shin, K. Chon, E.T. Kang, Y. Park, y S. Kim, Evaluation of Sentinel-2 based chlorophyll-a estimation in a small-scale reservoir: Assessing accuracy and availability. Remote Sensing, 16(2), 315, 2025, https://doi.org/10.3390/rs16020315

L. Miralha, y D. Kim, D, Accounting for and predicting the influence of spatial autocorrelation in water quality modeling. ISPRS international Journal of Geoinformation, 64-64, 2018.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Felipe Antonio Carranza Flores, Jorge Ernesto Lemus Flores, Alba Yanira Chávez Cardona (Autor/a)

Metrics

Metrics Loading ...