Structural development of prefabricated prototype for irregular topography
PDF (Spanish)
EPUB (Spanish)

Keywords

Adaptability
Design model
Structure
Timber
Prefabrication

How to Cite

Rodríguez Rodríguez, L. (2025). Structural development of prefabricated prototype for irregular topography. Investigaciones Latinoamericanas En Ingeniería Y Arquitectura, (2), 1–13. https://doi.org/10.51378/ilia.vi2.9652

Abstract

This paper presents the design and structural analysis of a housing prototype intended for rugged terrain. The design development process has been conceived to allow for construction using various technologies and building systems in certified wood, complying with Spanish regulations, given that the proposal was presented and reviewed in Spain. However, its adaptation to tropical climates has been considered, specifically to the Central American region, where the author originally conceptualized the design. It should be noted that the main focus of this development is the method of calculating an architectural idea and how technical feasibility is achieved through structural analysis, with both architectural and structural design exercises complementing each other.

PDF (Spanish)
EPUB (Spanish)

References

G. de E. Ministerio de Fomento, “CTE-DBSE-M Código Técnico de la Edificación, Documento Básico de Seguridad Estructural, Madera.” 2009.

The European Union Per Regulation 305/2011, “Eurocode 5: Design of timber structures. European Standard,” 2011.

G. de E. Ministerio de Fomento, “CTE-DB-SE Código Técnico de la Edificación, Documento Básico de Seguridad Estructural.” 2009.

G. de E. Ministerio de Fomento, “CTE-DB-SEAE Código Técnico de la Edificación, Documento Básico de Seguridad Estructural, Acciones en la Edificación.” 2009.

G. de E. Ministerio de Fomento, “CTE-DB-SI Código Técnico de la Edificación, Documento Básico de Seguridad Estructural, Seguridad en caso de Incendio.” 2010.

H. Hao, K. Bi, W. Chen, T. M. Pham, and J. Li, “Towards next generation design of sustainable, durable, multi-hazard resistant, resilient, and smart civil engineering structures,” Eng. Struct., vol. 277, p. 115477, 2023.

M. de O. Públicas, Norma para el Diseño y Construcción de estructuras de madera. 1994.

L. Gustavsson, K. Pingoud, and R. Sathre, “Carbon Dioxide Balance of Wood Substitution: Comparing Concrete- and Wood-Framed Buildings,” Mitig. Adapt. Strateg. Glob. Chang., vol. 11, no. 3, pp. 667–691, 2006.

L. Rodríguez, J. González, O. París-Viviana, and A. Muros, “Embodied Energy and Embodied Carbon in Different Industrialized Structural Systems Scenarios of a Prototype Building,” ACE Archit. City Environ., vol. 16, no. 47, Nov. 2021.

J. Albus, Prefabrication and automated processes in residential construction. Berlin: DOM publishers, 2017.

J. Albus and P. Meuser, Prefabricated housing: construction and design manual. Berlin: DOM publishers, 2018.

C. M. Hill, “Prefabrication, and Modularization: Increasing Productivity in the Construction Industry Smart Market Report.” McGrawHill Construction, New York, 2011.

Meli R., Diseño Estructural, segunda edición, 2o. México: Limusa, 2002.

T. C. Ting, Anisotropic elasticity : theory and applications. New York: Oxford University Press, 1996.

A. E. de N. y C. AENOR, “Norma UNE 56544:2022 Clasificación visual de la madera aserrada para uso estructural.” 2022.

A. E. de N. y C. AENOR, “UNE-EN 336:2014 Madera estructural. Medidas y tolerancias.,” 2014.

R. Sastre i Sastre, “WinEva,” WinEva © Copyright, 2022. [Online]. Available: https://wineva.upc.edu/esp/InformacionGeneral.php.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Lizeth Rodríguez Rodríguez (Autor/a)

Metrics

Metrics Loading ...