Dyslexia, neuroscience of specific learning disorders
PDF (Spanish)
EPUB (Spanish)

Keywords

Dyslexia
Neuroscience
Learning
Neuropsychology

How to Cite

Pérez, J. R. (2025). Dyslexia, neuroscience of specific learning disorders. ECA: Estudios Centroamericanos, 80(781), 55–72. https://doi.org/10.51378/eca.v80i181.10011

Abstract

Specific learning disorders -referred as dyslexia, dyscalculia, dysorthography, dysgraphia, among others- are multidimensional challenges for the academic, emotional and social performance of children and adolescents. These are not due to sensory deficits or teaching failures, but rather are the result of specific neurobiological abnormalities. In the case of dyslexia, for instance, neuroimaging research has found atypical activation in critical regions of the left hemisphere, such as the fusiform gyrus or the temporoparietal region, involved in decoding and phonological abilities, and reduced functional connectivity among these and other (in)directly relevant language production areas. On another hand, dyscalculia, involves changes in the intraparietal sulcus and the thalamus with effects on the processing of numbers and working memory. The neuropsychological evaluation is the touchstone of diagnosis for these learning disorders and for the planning of more individualized remediation. A variety of neuroscience-informed treatments (e.g., hemispheric stimulation, cognitive training, transcranial electrical stimulation, and educational computer games) have been successful in increasing reading and executive functions. Further research is, however, still required to gain an improved understanding of these conditions and an ethical obligation among professionals to follow the developments in this emerging field of learning disorder neuroscience.

PDF (Spanish)
EPUB (Spanish)

References

Als, H. y Duffy, F. H. (1989). Neurobehavioral assessment in the newborn period: Opportunity for early detection of later learning disabilities and for early intervention. Birth Defects Original Article Series, 25(6), 127-152.

Ansari, D., De Smedt, B. y Grabner, R. H. (2011, 22 de junio). Neuroeducation – A Critical Overview of An Emerging Field. Neuroethics, 5, 105-117. https://doi.org/10.1007/s12152-011-9119-3

Ashkenazi, S., Black, J. M., Abrams, D. A., Hoeft, F. y Menon, V. (2013, 9 de abril). Neurobiological Underpinnings of Math and Reading Learning Disabilities. Journal of Learning Disabilities, 46(6), 549-569. https://doi.org/10.1177/0022219413483174

Bakker, D. J. (1990). Neuropsychological Treatment of Dyslexia. Oxford University Press.

Bakker, D. J. (1992). Neuropsychological Classification and Treatment of Dyslexia. Journal of Learning Disabilities, 25(2), 102-109. https://doi.org/10.1177/002221949202500203

Barlow, D. H., Durand, V. M. y Hofmann, S. G. (2016). Abnormal Psychology: An Integrative Approach. Cengage Learning.

Cohen Kadosh, R., Dowker, A., Heine, A., Kaufmann, L. y Kucian, K. (2013). Interventions for improving numerical abilities: Present and future. Trends in Neuroscience and Education, 2(2), 85-93. https://doi.org/10.1016/j.tine.2013.04.001

Cohen, L. y Dehaene, S. (2004). Specialization within the ventral stream: the case for the visual word form area. NeuroImage, 22(1), 466-476. https://doi.org/10.1016/j.neuroimage.2003.12.049

De Smedt, B., Peters, L. y Ghesquière, P. (2019). Neurobiological Origins of Mathematical Learning Disabilities or Dyscalculia: A Review of Brain Imaging Data. En A. Fritz, V. G. Haase y P. Räsänen (Eds.), International Handbook of Mathematical Learning Difficulties: From the Laboratory to the Classroom (pp. 367-384). Springer International Publishing. https://doi.org/10.1007/978-3-319-97148-3_23

Deutsch, G. K., Dougherty, R. F., Bammer, R., Siok, W. T., Gabrieli, J. D. E. y Wandell, B. (2005). Children's Reading Performance is Correlated with White Matter Structure Measured by Diffusion Tensor Imaging. Cortex, 41(3), 354-363. https://doi.org/10.1016/s0010-9452(08)70272-7

Ding, G., Li, H. y Feng, X. (2023). Detecting the visual word form area in a bilingual brain. Trends in Cognitive Sciences, 27(7), 603-604. https://doi.org/10.1016/j.tics.2023.05.003

Dr. Biology. (2017, 31 de mayo). ¿Qué hay en tu cerebro? ASU-Ask A Biologist. https://askabiologist.asu.edu/que-hay-en-tu-cerebro

Fennell, E. B. (1995). The Role of Neuropsychological Assessment in Learning Disabilities. Journal of Child Neurology, 10(1_suppl), S36-S41. https://doi.org/10.1177/08830738950100S109

Fletcher, J. M. y Grigorenko, E. L. (2017). Neuropsychology of Learning Disabilities: The Past and the Future. Journal of the International Neuropsychological Society, 23(9-10), 930-940. https://doi.org/10.1017/S1355617717001084

Gosse, C., Dricot, L. y Van Reybroeck, M. (2022). Evidence of Altered Functional Connectivity at Rest in the Writing Network of Children with Dyslexia. Brain Sciences, 12(2), 243. https://doi.org/10.3390/brainsci12020243

Hoeft, F., McCandliss, B. D., Black, J. M., Gantman, A., Zakerani, N., Hulme, C., Lyytinen, H., Whitfield-Gabrieli, S., Glover, G. H., Reiss, A. L. y Gabrieli, J. D. E. (2011). Neural systems predicting long-term outcome in dyslexia. Proceedings of the National Academy of Sciences, 108(1), 361-366. https://doi.org/10.1073/pnas.1008950108

Jacob, S. N. y Nieder, A. (2009). Tuning to non-symbolic proportions in the human frontoparietal cortex. The European Journal of Neuroscience, 30(7), 1432-1442. https://doi.org/10.1111/j.1460-9568.2009.06932.x

Karch, D., Albers, L., Renner, G., Lichtenauer, N. y von Kries, R. (2013). The Efficacy of Cognitive Training Programs in Children and Adolescents. Deutsches Ärzteblatt International, 110(39), 643-652. https://doi.org/10.3238/arztebl.2013.0643

Kovas, Y., Haworth, C. M. A., Dale, P. S. y Plomin, R. (2007). The genetic and environmental origins of learning abilities and disabilities in the early school years. Monographs of the Society for Research in Child Development, 72(3), 1-144. https://pubmed.ncbi.nlm.nih.gov/17995572/

Koyama, M. S., Di Martino, A., Zuo, X.-N., Kelly, C., Mennes, M., Jutagir, D. R., Castellanos, F. X. y Milham, M. P. (2011). Resting-State Functional Connectivity Indexes Reading Competence in Children and Adults. JNeurosci, The Journal of Neuroscience, 31(23), 8617-8624. https://doi.org/10.1523/JNEUROSCI.4865-10.2011

Krafnick, A. J. y Evans, T. M. (2019, 10 de enero). Neurobiological Sex Differences in Developmental Dyslexia. Frontiers in Psychology, 9, 2669. https://doi.org/10.3389/fpsyg.2018.02669

Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E. y von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behavioral and Brain Functions, 2, 31. https://doi.org/10.1186/1744-9081-2-31

Langer, N., Benjamin, C., Minas, J. y Gaab, N. (2015). The Neural Correlates of Reading Fluency Deficits in Children. Cerebral Cortex, 25(6), 1441-1453. https://doi.org/10.1093/cercor/bht330

Menon, V. (2010, 9 de marzo). Developmental cognitive neuroscience of arithmetic: implications for learning and education. ZDM-Mathematics Education, 42, 515-525. https://doi.org/10.1007/s11858-010-0242-0

Meyler, A., Keller, T. A., Cherkassky, V. L., Lee, D., Hoeft, F., Whitfield-Gabrieli, S., Gabrieli, J. D. E. y Just, M. A. (2007). Brain Activation during Sentence Comprehension among Good and Poor Readers. Cerebral Cortex, 17(12), 2780-2787. https://doi.org/10.1093/cercor/bhm006

Moll, K., Kunze, S., Neuhoff, N., Bruder, J. y Schulte-Körne, G. (2014, 29 de junio). Specific Learning Disorder: Prevalence and Gender Differences. PLOS One, 9(7), e103537. https://doi.org/10.1371/journal.pone.0103537

Nieder, A. y Miller, E. K. (2003, 9 de enero). Coding of Cognitive Magnitude: Compressed Scaling of Numerical Information in the Primate Prefrontal Cortex. Neuron, 37(1), 149-157. https://doi.org/10.1016/S0896-6273(02)01144-3

Obrzut, J. E., Hynd, G. W. y Obrzut, A. (1983). Neuropsychological assessment of learning disabilities: A discriminant analysis. Journal of Experimental Child Psychology, 35(1), 46-55. https://doi.org/10.1016/0022-0965(83)90069-3

Piazza, M., Pinel, P., Le Bihan, D. y Dehaene, S. (2007, 18 de enero). A Magnitude Code Common to Numerosities and Number Symbols in Human Intraparietal Cortex. Neuron, 53(2), 293-305. https://doi.org/10.1016/j.neuron.2006.11.022

Price, C. J. (2012, 15 de agosto). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816-847. https://doi.org/10.1016/j.neuroimage.2012.04.062

Pugh, K. R., Mencl, W. E., Jenner, A. R., Katz, L., Frost, S. J., Lee, J. R., Shaywitz, S. E. y Shaywitz, B. A. (2000a). Functional neuroimaging studies of reading and reading disability (developmental dyslexia). Mental Retardation and Developmental Disabilities Research Reviews, 6(3), 207-213. https://pubmed.ncbi.nlm.nih.gov/10982498/

Pugh, K. R., Mencl, W. E., Shaywitz, B. A., Shaywitz, S. E., Fulbright, R. K., Constable, R. T., Skudlarski, P., Marchione, K. E., Jenner, A. R., Fletcher, J. M., Liberman, A. M., Shankweiler, D. P., Katz, L., Lacadie, C. y Gore, J. C. (2000b). The Angular Gyrus in Developmental Dyslexia: Task-Specific Differences in Functional Connectivity Within Posterior Cortex. Psychological Science, 11(1), 51-56. https://doi.org/10.1111/1467-9280.00214

Raskin, S. A. (2011). Neuroplasticity and Rehabilitation. Guilford Press.

Reschly, D. J. (2005). Learning Disabilities Identification: Primary Intervention, Secondary Intervention, and Then What? Journal of Learning Disabilities, 38(6), 510-515. https://doi.org/10.1177/00222194050380060601

Richards, T. L., Grabowski, T. J., Boord, P., Yagle, K., Askren, M., Mestre, Z., Robinson, P., Welker, O., Gulliford, D., Nagy, W. y Berninger, V. (2015). Contrasting brain patterns of writing-related DTI parameters, fMRI connectivity, and DTI-fMRI connectivity correlations in children with and without dysgraphia or dyslexia. NeuroImage. Clinical, 8, 408-421. https://doi.org/10.1016/j.nicl.2015.03.018

Rykhlevskaia, E., Uddin, L. Q., Kondos, L. y Menon, V. (2009, 24 de noviembre). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51. https://doi.org/10.3389/neuro.09.051.2009

Sabeghi, F., Mohammadyfar, M. y Rezaei, A. (2022). Effectiveness of Neuropsychological Intervention on Reading Performance and Executive Functions in Dyslexic Children. Iranian Evolutionary Educational Psychology Journal, 4(1), 13-24. https://doi.org/10.52547/ieepj.4.1.13

Saralegui, I., Ontañón, J. M., Fernandez-Ruanova, B., Garcia-Zapirain, B., Basterra, A. y Sanz-Arigita, E. J. (2014). Reading networks in children with dyslexia compared to children with ocular motility disturbances revealed by fMRI. Frontiers in Human Neuroscience, 8, 936. https://doi.org/10.3389/fnhum.2014.00936

Shaywitz, B. A., Shaywitz, S. E., Pugh, K. R., Fulbright, R. K., Mencl, W. E., Constable, R. T., Skudlarski, P., Fletcher, J. M., Lyon, G. R. y Gore, J. C. (2001). The neurobiology of dyslexia. Clinical Neuroscience Research, 1(4), 291-299. https://doi.org/10.1016/S1566-2772(01)00015-9

Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., Mencl, W. E., Constable, R. T., Holahan, J. M., Marchione, K. E., Fletcher, J. M., Lyon, G. R. y Gore, J. C. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically-based intervention. Biological Psychiatry, 55(9), 926-933. https://doi.org/10.1016/j.biopsych.2003.12.019

Shaywitz, S. E. y Shaywitz, B. A. (2005). Dyslexia (Specific Reading Disability). Biological Psychiatry, 57(11), 1301-1309. https://doi.org/10.1016/j.biopsych.2005.01.043

Tallal, P. y Jenkins, W. (2018). The Birth of Neuroplasticity Interventions: A Twenty Year Perspective. En T. Lachmann y T. Weis (Eds.), Reading and Dyslexia: From Basic Functions to Higher Order Cognition (pp. 299-322). Springer International Publishing. https://doi.org/10.1007/978-3-319-90805-2_14

Theodoridou, D., Christodoulides, P., Zakopoulou, V. y Syrrou, M. (2021). Developmental Dyslexia: Environment Matters. Brain Sciences, 11(6), 782. https://doi.org/10.3390/brainsci11060782

Van der Mark, S., Klaver, P., Bucher, K., Maurer, U., Schulz, E., Brem, S., Martin, E. y Brandeis, D. (2011, 1 de febrero). The left occipitotemporal system in reading: Disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. NeuroImage, 54(3), 2426-2436. https://doi.org/10.1016/j.neuroimage.2010.10.002

Van Hoorn, J. F., Maathuis, C. G. B. y Hadders-Algra, M. (2013, 18 de noviembre). Neural correlates of paediatric dysgraphia. Developmental Medicine & Child Neurology, 55(s4), 65-68. https://doi.org/10.1111/dmcn.12310

Van Strien, J. W., Bakker, D. J., Bouma, A. y Koops, W. (1990). Familial resemblance for cognitive abilities in families with P-type dyslexic, L-type dyslexic, or normal reading boys. Journal of Clinical and Experimental Neuropsychology, 12(6), 843-856. https://doi.org/10.1080/01688639008401026

Wanzek, J. y Vaughn, S. (2007). Research-Based Implications From Extensive Early Reading Interventions. School Psychology Review, 36(4), 541-561. https://doi.org/10.1080/02796015.2007.12087917

Wanzek, J., Stevens, E. A., Williams, K. J., Scammacca, N., Vaughn, S. y Sargent, K. (2018, 21 de mayo). Current Evidence on the Effects of Intensive Early Reading Interventions. Journal of Learning Disabilities, 51(6), 612-624. https://doi.org/10.1177/0022219418775110

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2025 José Rodolfo Pérez

Metrics

Metrics Loading ...